Drinking Water Quality Report

2022 • Published in 2023

NOTE: Industrial and commercial customers, including hospitals, medical centers, and health clinics, please forward this report to your Environmental Compliance Manager.

This report is produced for you as a requirement of the Federal Safe Drinking Water Act.

PWD’s Public Water System Identification #PA1510001
Your water is locally sourced.

Water from our rivers is treated to the highest standards.

ABOVE
Water’s journey begins in the creeks and streams of our watershed. We partner with local organizations who help protect the source of our drinking water.

BELOW
The Schuylkill River (pictured) and the Delaware River provide the water we treat at our Drinking Water Treatment Plants.
Delivering clean tap water is our top priority.

In March 2023, Philadelphia experienced a frightening reminder of just how valuable clean water is when a chemical spill occurred on the Delaware River just outside of the city.

Making sure we can rely on clean tap water is what drives the Philadelphia Water Department. It’s why we have a longstanding and extensive water quality monitoring program that enabled us to determine with confidence that our water remained safe throughout the incident. It’s also why we created and continually improve the Delaware Valley Early Warning System, which alerted the region of the spill and allowed Philadelphia to respond rapidly. Read about that system on page 7.

Every day, more than a million Philadelphia residents get clean, quality water from the Delaware River, with the rest of the city depending on the Schuylkill. We, of course, rely on this water for drinking, cooking, washing, and other essential daily activities.

In this report, you will find the results of the testing we do around the clock. Please read through these pages and, learn about all we do to protect our city. The employees of the Philadelphia Water Department live in Philadelphia, and we drink the water we deliver to our customers.

We know how important clean tap water you can trust is, and we work to ensure it’s available when you need it.

Sincerely,

Randy E. Hayman, Esq.
Water Commissioner

Contact Information

Philadelphia Water Department
1101 Market St.
Philadelphia, PA 19107

Public Water System ID #PA1510001

Brian Rademaekers
Public Information Officer,
Public Affairs
(215) 380-9327
Table of Contents

3 A message from the Commissioner
4 Sharing this report
4 People with special health concerns
5 How this document is organized

Part One: Source & Treatment
6 Philadelphia’s source watersheds
7 Monitoring source water to promote health and safety
8 Drinking Water Treatment Plants and processes
9 A Closer Look: Hardness

Part Two: Delivery
10 A Closer Look: Residual Chlorine
11 25-year Water Revitalization Plan

Part Three: At Home
12 Your service line
12 Corrosion Control
12 Flushing your pipes
13 Talking about tap water
14 Lead in a property’s plumbing
14 A Closer Look: Carefully monitoring lead
14 Lead Service Line replacement

2022 Data Tables & More
15 An Introduction to the results
16 What we test for and how
17– 21 2022 Data tables
22 Glossary
23 Top customer questions

People with special health concerns
Some people may be more vulnerable to contaminants in drinking water than the general population.
Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS and other immune system disorders, and some elderly people and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

U.S. Environmental Protection Agency (EPA)/Centers for Disease Control CDC guidelines on appropriate means to lessen the risk of drinking water contaminants are available from the Safe Drinking Water Hotline: (800) 426-4791.

View this report online: water.phila.gov/2022-quality
How this document is organized:

This story follows our water quality work from source and treatment through delivery to your home.

Part One: Source & Treatment
Philly's local water sources—and what we do to keep water safe
pages 6–9

Part Two: Delivery
Safe transit through the system
pages 10–11

Part Three: At Home
The final stretch to your tap
pages 12–14

2022 Data Tables & More
pages 15–23

Look for these quick guides throughout the report:

A CLOSER LOOK
Charts and graphs let you see the data in a new way.

Here's the story of why we do this test

RESULT:
All results are better than the recommended federal levels.

Handwritten notes explain how and why we do these tests.

Look here for key takeaways.
Your water begins in freshwater streams.

Philadelphia’s water comes from the Delaware River Watershed. The watershed begins in New York State and extends 330 miles south to the mouth of the Delaware Bay. The Schuylkill River is part of the Delaware River Watershed.

Philadelphia source watersheds
- Delaware River Watershed
- Schuylkill River Watershed

Protection starts at the sources.

We take a holistic approach, beginning with Philadelphia’s water supply. We monitor waterways across the watershed and look for potential sources of contamination. We keep track of water availability and flow.
Our wide range of tools for protecting water sources includes:

<table>
<thead>
<tr>
<th>Research</th>
<th>Projects in the field</th>
<th>Partnerships</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We study regional influences, such as natural gas drilling and global influences, like sea level rise.</td>
<td>• We protect against stormwater and agricultural runoff.</td>
<td>• We team up with organizations across the region to protect our entire watershed.</td>
</tr>
</tbody>
</table>

Monitoring source water to promote health and safety

Per- and polyfluoroalkyl substances (PFAS) are potentially harmful chemicals used in industry and many consumer products. We study PFAS in the city's rivers, creeks, and finished water.

Cryptosporidium, a microscopic organism sometimes found in freshwater, can cause illness in humans. We are one of the nation’s leaders in Cryptosporidium research. We work closely with Philadelphia’s Department of Public Health to ensure our tap water is free of Cryptosporidium and other organisms.

SPOTLIGHT:

Delaware Valley Early Warning System (EWS)

Reducing emergency response times by communicating across the area.

Our drinking water is a resource shared by millions of people in towns and cities across the region. The Delaware Valley Early Warning System (EWS) protects drinking water by providing rapid notifications to organizations and utilities like PWD.

The web-based emergency communication system reports events like truck and freight accidents and chemical spills that may impact our source water.
Drinking Water Treatment Plants:
An important early step in water’s journey.

Gravity settling
River water is pumped to reservoirs. The heaviest sediment settles.

Disinfection
We add Sodium Hypochlorite to kill harmful organisms.

Coagulant, flocculation, and pH
Gentle mixing helps particles clump together. We also adjust the acidity.

Additional settling
Clumps of particles settle and are removed.

Additional disinfection
We add Sodium Hypochlorite a second time to kill any remaining harmful organisms.

Filtration
Filters remove more microscopic particles.

Additional treatment
Ingredients like Fluoride, Zinc Phosphate, and Ammonia help keep water healthy and safe.

We have three drinking water treatment plants.

Baxter pulls water from the Delaware River. Queen Lane and Belmont pull from the Schuylkill. Each plant has a service area. Some areas in Philadelphia can receive a mix from multiple treatment plants. Use the map above to see where your water is treated.

Typical Treatment Process
These are some of the stages water goes through during normal operating conditions.

High-quality staff. High-quality results:
The experts working at our treatment plants take pride in using water drawn from our local rivers. Hundreds of millions of gallons of top-quality drinking water are produced every day.
Before water leaves the plant

We test our treated water for about 100 regulated contaminants, ranging from organisms like bacteria to chemicals like nitrate. In 2022, we found no violations under state and federal regulations.

Final touches

Chlorine + Ammonia
Chlorine protects us from organisms found in untreated water that can cause disease. Ammonia is added to make the chlorine last longer and reduce the bleach-like smell.

Fluoride
All water contains some fluoride. We adjust the natural levels slightly to help protect your teeth against decay.

Zinc orthophosphate
Zinc orthophosphate is a compound that helps form a protective coating inside pipes. It prevents corrosion (or breaking down over time).

Hardness

The hardness of water is determined by the minerals naturally dissolved in it.

Hardness can vary based on natural conditions – for example, a drought can impact hardness.

Hardness matters if you use your water for activities, such as brewing beer or keeping a home aquarium. Customers often ask about hardness when researching appliances like dishwashers.

Most recent results

![Bar chart showing water hardness levels at various treatment plants.]

What this means for you

 resultat: Philadelphia's water is moderately hard or hard, depending on which treatment plant serves your neighborhood.

Hardness matters if you use your water for activities like brewing beer or keeping a home aquarium.

Most customers don’t need to monitor their water’s hardness.
Part Two
Delivery

A safe path through the system

We have about 3,100 miles of water mains that deliver clean tap to customers. To ensure water stays safe as it moves from the plant to you, we take samples and monitor real-time water quality data 24/7.

A CLOSER LOOK

Residual Chlorine

This test is done throughout the system. It checks that the chlorine added at plants remains at levels that keep water fresh and safe while staying within regulations.

Most recent results

- **Highest level allowed**
- PWD’s monthly average is within limits.
- **Lowest level allowed**

<table>
<thead>
<tr>
<th>ppm (parts per million)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

What this means for you

RESULT: Better than standards.

We travel the city to collect samples of drinking water from fire and police stations, pumping stations, and more.

We do over 400 of these tests every month!
SPOTLIGHT:

Water Revitalization Plan

Philadelphia has a 25-year plan to strengthen our essential drinking water infrastructure.

We need a system that can respond to events like natural disasters or emergencies. New transmission mains will allow water service for the entire City from either river, if needed, for an indefinite period of time.

Dozens of projects are carefully coordinated. The sequence maximizes benefits for Philadelphians and reduces service interruptions and impacts.

Working with communities is a key component of our plan. The plan’s Stakeholder Advisory Group has a diverse roster of community members. They serve two-year terms helping to share plan information and progress.

PLAN SPOTLIGHT:

Mini Water Treatment Plants

Inside a container about the size of a trailer, PWD scientists test the methods planned for upgraded treatment plants. Mini laboratories like this allow us to test treatment methods before we use them at a much larger scale.

Learn more: water.phila.gov/revitalization
Meet your service line

You and your property’s plumbing play a role in keeping water safe.

Corrosion Control
Reducing risks from lead in a property’s plumbing

We treat water to prevent lead pipes from corroding. This is called corrosion control, and it prevents lead from dissolving into water. Tests at homes with lead plumbing show our treatment is working: corrosion controls keeps lead levels below state and federal limits.

What do we mean by “flushing your pipes”?

Flushing pushes the water that is sitting in pipes out and down your drain until fresh water comes through the tap. When pipes are disturbed during construction or repairs, they might require flushing.

The service line is a pipe that carries clean water from the city’s water mains into your home. It’s a part of your property’s plumbing, even though it’s usually underground.

If you own your property, the service line is your responsibility.

With corrosion control
Without corrosion control

Fresh water starts at our water mains.

Running the tap gets rid of water sitting in pipes.
Healthy home habit

If you haven’t used water for 6 hours or more: Run your cold water for 3–5 minutes. This will flush out water that’s been sitting in your pipes. It only costs a penny or two to ensure top-quality tap!

Talking about tap water

In neighborhoods across Philadelphia, our customers tell us what matters to them. When it comes to tap water, there’s a lot to talk about!

For starters, some residents are surprised they can get great drinking water right at home for less than a penny per gallon.

In conversations, we hear loud and clear: Safe drinking water is a top priority, and people are excited to learn more about water quality.
If lead is detected in drinking water, it comes from a property’s plumbing

A home’s older fixtures & valves:
It could be in fixtures, valves, and solder.
Lead was prohibited from plumbing materials in 1986.

Service line:
This pipe connects a property’s plumbing to the water main in the street. Homes from 1950 or earlier may still have lead in sections of the service line.

US EPA Guidance
The EPA requires public water providers like the Philadelphia Water Department to monitor drinking water for lead at customer taps. If lead levels are higher than 15 parts per billion (ppb) in more than 10% of taps sampled, water providers must inform customers and take steps to reduce lead in water.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from material and components associated with service lines and home plumbing.

The Philadelphia Water Department is responsible for providing safe drinking water but cannot control the variety of materials used in plumbing components. If you haven’t turned on your tap for several hours, you can minimize the potential for lead exposure by flushing your tap before using water for drinking and cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791 or at: www.epa.gov/safewater/lead.

We offer a zero-interest loan for replacing lead service lines.
The Homeowners Emergency Loan Program (HELP) can cover the cost of a replacement.

Learn more & apply: www.phila.gov/water/helploan
All of PWD's results are better than the required and recommended federal levels designed to protect public health.

This data shows how our process keeps your drinking water safe.

By reporting these results in these tables, we are meeting a requirement of the EPA.

Some contaminants may pose a health risk at certain levels to people with special health concerns. Others are used as indicators for treatment plant performance.

What’s a “PPM”?

Many of these results are reported as “parts per million (ppm)” or “parts per billion (ppb)”.

Here’s what that looks like:

PPM vs. PPB vs. PPT

- **ppm (parts per million):** Denotes 1 part per 1,000,000 parts, which is equivalent to **two-thirds of a gallon** in an Olympic-sized swimming pool.

- **ppb (parts per billion):** Denotes 1 part per 1,000,000,000 parts, which is equivalent to **half a teaspoon** in an Olympic-sized swimming pool.

- **ppt (parts per trillion):** Denotes 1 part per 1,000,000,000,000 parts, which is equivalent to **one drop** in 20 Olympic-sized swimming pools.

For more abbreviations and their definitions, visit the Glossary on page 22.
What we test for and how

Public drinking water systems monitor their treated drinking water for approximately 100 regulated contaminants. These regulatory parameters are defined within federal rules such as the Revised Total Coliform Rule, Surface Water Treatment Rule, Disinfectants and Disinfection Byproducts Rules, Lead and Copper Rule, and the Radionuclides Rule.

We monitor for the regulated parameters listed below.

Any contaminants found are noted in the tables on the following pages:

Inorganic Chemicals
- Antimony
- Arsenic
- Barium
- Beryllium
- Cadmium
- Chromium
- Copper
- Cyanide
- Fluoride
- Lead
- Mercury
- Nickel
- Nitrate
- Nitrite
- Selenium
- Thallium

Synthetic Organic Chemicals
- 2,3,7,8 - TCDD (Dioxin)
- 2,4 – D, 2,4,5 - TP (Silvex)
- Alachlor
- Atrazine
- Benzopyrene
- Carbofuran
- Chlordane
- Dalapon
- Di(ethylhexyl) adipate
- Di(ethylhexyl) phthalate
- Dibromochloropropane
- Dinoseb
- Diquat
- Endothall
- Endrin
- Ethylene Dibromide
- Glyphosate
- Heptachlor
- Heptachlor epoxide
- Hexachlorobenzene
- Hexachlorocyclopentadiene
- Lindane
- Methoxychlor
- Oxamyl
- PCBs Total
- Pentachlorophenol
- Picloram
- Simazine
- Toxaphene

Volatile Organic Chemicals
- Benzene
- Carbon Tetrachloride
- 1,2-Dichloroethane
- o-Dichlorobenzene
- p-Dichlorobenzene
- 1,1-Dichloroethylene
- cis-1,2-Dichloroethylene
- trans-1,2-Dichloroethylene
- Dichloromethane
- 1,2-Dichloropropane
- Ethylbenzene
- Monochlorobenzene
- Styrene
- Tetrachloroethylene
- Toluene
- 1,2,4-Trichlorobenzene
- 1,11-Trichloroethane
- 1,1,2-Trichloroethane
- Trichloroethylene
- o-Xylene
- m,p-Xylenes
- Vinyl Chloride

Other factors that can impact drinking water

Appealing to Your Senses

We work to ensure your water looks, tastes and smells the way it should.

To meet all water quality taste and odor guidelines, we test for the following: alkalinity, aluminum, chloride, color, hardness, iron, manganese, odor, pH, silver, sodium, sulfate, surfactants, total dissolved solids, turbidity and zinc.

Temperature and Cloudiness

The temperature of the Schuylkill and Delaware Rivers varied seasonally in 2022 from approximately 34°–88° Fahrenheit. PWD does not treat the water for temperature.

Cloudiness in tap water most commonly happens in the winter, when the cold water from the water main is warmed up quickly in household plumbing. Cold water and water under pressure can hold more air than warmer water and water open to the atmosphere.

When really cold winter water comes out of your tap, it’s simultaneously warming up and being relieved of the pressure it was under inside the water main and your plumbing. The milky white color is actually just tiny air bubbles. If you allow the glass to sit undisturbed for a few minutes, you will see it clear up gradually.
2022 Data tables

Sodium, Hardness, and Alkalinity in tap water

The parameters listed on this page are not part of EPA's requirements and are provided for information purposes.

WATER TIP:
Parameters like these matter if you use your water for activities like brewing beer or keeping a home aquarium.

SODIUM in Tap Water

<table>
<thead>
<tr>
<th></th>
<th>Baxter WTP One Year Average</th>
<th>Belmont WTP One Year Average</th>
<th>Queen Lane WTP One Year Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (ppm)</td>
<td>24 ppm</td>
<td>46 ppm</td>
<td>41 ppm</td>
</tr>
<tr>
<td>Average (mg in 8 oz. glass of water)</td>
<td>6 mg</td>
<td>11 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>Range (ppm)</td>
<td>19–41 ppm</td>
<td>31–61 ppm</td>
<td>20–65 ppm</td>
</tr>
<tr>
<td>Range (mg in 8 oz. glass of water)</td>
<td>4–10 mg</td>
<td>7–14 mg</td>
<td>5–15 mg</td>
</tr>
</tbody>
</table>

HARDNESS in Tap Water

<table>
<thead>
<tr>
<th></th>
<th>Baxter WTP One Year Average</th>
<th>Belmont WTP One Year Average</th>
<th>Queen Lane WTP One Year Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>93 ppm or 5 gpg</td>
<td>134 ppm or 8 gpg</td>
<td>158 ppm or 9 gpg</td>
</tr>
<tr>
<td>Minimum</td>
<td>75 ppm or 4 gpg</td>
<td>100 ppm or 6 gpg</td>
<td>87 ppm or 5 gpg</td>
</tr>
<tr>
<td>Maximum</td>
<td>105 ppm or 6 gpg</td>
<td>170 ppm or 10 gpg</td>
<td>197 ppm or 11 gpg</td>
</tr>
</tbody>
</table>

Hardness defines the quantity of minerals, such as calcium and magnesium, in water. These minerals react with soap to form insoluble precipitates and can affect common household chores such as cooking and washing. Philadelphia's water is considered "moderately hard" or "hard" depending on your service area.

ALKALINITY in Tap Water

<table>
<thead>
<tr>
<th></th>
<th>Baxter WTP One Year Average</th>
<th>Belmont WTP One Year Average</th>
<th>Queen Lane WTP One Year Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>40 ppm</td>
<td>71 ppm</td>
<td>71 ppm</td>
</tr>
<tr>
<td>Minimum</td>
<td>26 ppm</td>
<td>44 ppm</td>
<td>32 ppm</td>
</tr>
<tr>
<td>Maximum</td>
<td>52 ppm</td>
<td>101 ppm</td>
<td>93 ppm</td>
</tr>
</tbody>
</table>
Secondary Chemicals

EPA has established National Secondary Drinking Water Regulations (NSDWRs) that set non-mandatory water quality standards. EPA does not enforce these "secondary maximum contaminant levels" (SMCLs). They are established as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL.

SECONDARY MCLs: AESTHETIC IMPACTS IN TAP WATER

<table>
<thead>
<tr>
<th></th>
<th>EPA’s SMCL</th>
<th>Baxter WTP One Year Range</th>
<th>Belmont WTP One Year Range</th>
<th>Queen Lane WTP One Year Range</th>
<th>Violation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>250 ppm</td>
<td>55–102 ppm</td>
<td>66–126 ppm</td>
<td>58–162 ppm</td>
<td>No</td>
</tr>
<tr>
<td>Copper</td>
<td>1.0 ppm</td>
<td>0.002–0.196 ppm</td>
<td>0.008–0.012 ppm</td>
<td>0.025–0.057 ppm</td>
<td>No</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2 ppm**</td>
<td>0.76 ppm</td>
<td>0.81 ppm</td>
<td>0.74 ppm</td>
<td>No</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 ppm</td>
<td>0–0.026 ppm</td>
<td>0–0.011 ppm</td>
<td>0–0.011 ppm</td>
<td>No</td>
</tr>
<tr>
<td>pH</td>
<td>6.5–8.5</td>
<td>7.09–7.29</td>
<td>7.10–7.30</td>
<td>7.00–7.30</td>
<td>No</td>
</tr>
<tr>
<td>Sulfate</td>
<td>250 ppm</td>
<td>7.30–17.00 ppm</td>
<td>16.40–58.50 ppm</td>
<td>9.02–58.10 ppm</td>
<td>No</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>500 ppm</td>
<td>150–256 ppm</td>
<td>216–374 ppm</td>
<td>194–416 ppm</td>
<td>No</td>
</tr>
</tbody>
</table>

PWD also monitored for Aluminum, Color, Manganese, and Silver in 2022; all results were below respective parameter detection limits.

*Individual results are averaged monthly and compliance is based on running annual average.

**EPA’s MCL and MCLG is 4 ppm, but PADEP has set this lower MCL and MCLG which takes precedence.

Sources of Secondary Chemicals

Chloride
Main component of many salts, may increase in winter months; Erosion of natural minerals; Used in the water treatment process in the form of ferric chloride.

Copper
Corrosion of copper pipes in premise plumbing; Erosion of natural deposits.

Fluoride
Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories.

Iron
Corrosion of iron water mains and premise plumbing; Erosion of natural minerals; Used in the water treatment process in the form of ferric chloride.

pH
Adjusted during the water treatment process.

Sulfate
Erosion of natural minerals; Runoff from mining operations.

Total Dissolved Solids
Erosion of natural minerals; May increase during winter months due to road salt runoff or during drought conditions.
LEAD & COPPER – Tested at customers’ taps: Testing is done every 3 years. Most recent tests were done in 2019.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>EPA’s Action Level - for a representative sampling of customer homes</th>
<th>Ideal Goal (EPA’s MCLG)</th>
<th>90% of PWD customers’ homes were less than</th>
<th>Number of homes considered to have elevated levels</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>90% of homes must test less than 15 ppb</td>
<td>0 ppb</td>
<td>2.0 ppb</td>
<td>3 out of 104</td>
<td>No</td>
<td>Corrosion of household plumbing; Erosion of natural deposits</td>
</tr>
<tr>
<td>Copper</td>
<td>90% of homes must test less than 1.3 ppm</td>
<td>1.3 ppm</td>
<td>0.219 ppm</td>
<td>0 out of 104</td>
<td>No</td>
<td>Corrosion of household plumbing; Erosion of natural deposits; Leaching from wood preservatives</td>
</tr>
</tbody>
</table>

INORGANIC CHEMICALS (IOC) – PWD monitors for IOC more often than required by EPA.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Highest Level Allowed (EPA’s MCL)</th>
<th>Ideal Goal (EPA’s MCLG)</th>
<th>Highest result</th>
<th>Range of Test Results for the Year</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>6 ppb</td>
<td>6 ppb</td>
<td>0.4 ppb</td>
<td>0–0.4 ppb</td>
<td>No</td>
<td>Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder</td>
</tr>
<tr>
<td>Barium</td>
<td>2 ppm</td>
<td>2 ppm</td>
<td>0.052 ppm</td>
<td>0.028–0.052 ppm</td>
<td>No</td>
<td>Discharges of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium</td>
<td>100 ppb</td>
<td>100 ppb</td>
<td>2 ppb</td>
<td>0–2 ppb</td>
<td>No</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2 ppm*</td>
<td>2 ppm*</td>
<td>0.81 ppm</td>
<td>0.74–0.81 ppm</td>
<td>No</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10 ppm</td>
<td>10 ppm</td>
<td>4.10 ppm</td>
<td>0.85–4.10 ppm</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

*EPA’s MCL and MCLG is 4 ppm, but PADEP has set this lower MCL and MCLG which takes precedence.

TOTAL CHLORINE RESIDUAL – Continuously monitored at Water Treatment Plants

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Minimum Disinfectant Residual Level Allowed</th>
<th>Lowest Level Detected</th>
<th>Yearly Range</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baxter WTP</td>
<td>0.2 ppm</td>
<td>2.56 ppm</td>
<td>2.56–3.49 ppm</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Belmont WTP</td>
<td>1.83 ppm</td>
<td>1.83 ppm</td>
<td>1.83–2.90 ppm</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Queen Lane WTP</td>
<td>1.60 ppm</td>
<td>1.60 ppm</td>
<td>1.60–3.50 ppm</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
TOTAL CHLORINE RESIDUAL
- Tested throughout the Distribution System. Over 360 samples collected throughout the City every month.

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Maximum Disinfectant Residual Allowed</th>
<th>Highest Monthly Average</th>
<th>Monthly Average Range</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution System</td>
<td>4.0 ppm</td>
<td>2.59 ppm</td>
<td>1.91–2.59 ppm</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

TOTAL ORGANIC CARBON
- Tested at Water Treatment Plants

<table>
<thead>
<tr>
<th>Treatment Technique Requirement</th>
<th>Baxter WTP One Year Average</th>
<th>Belmont WTP One Year Average</th>
<th>Queen Lane WTP One Year Average</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Removal Required</td>
<td>25–45%</td>
<td>25–45%</td>
<td>25–45%</td>
<td>n/a</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Percent of Removal Achieved*</td>
<td>40–67%</td>
<td>32–64%</td>
<td>29–72%</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Number of Quarters out of Compliance*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PWD achieved TOC removal requirements in all quarters of 2022 at all WTPs. Compliance is based on a running annual average computed quarterly. The numbers shown represent a range of TOC results in weekly samples.

TURBIDITY, A MEASURE OF CLARITY
- Tested at Water Treatment Plants

<table>
<thead>
<tr>
<th>Treatment Technique Requirement: 95% of samples must be at or below 0.300 NTU</th>
<th>Baxter WTP One Year Average</th>
<th>Belmont WTP One Year Average</th>
<th>Queen Lane WTP One Year Average</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest single value for the year</td>
<td>0.096 NTU</td>
<td>0.100 NTU</td>
<td>0.141 NTU</td>
<td>No</td>
<td>Soil runoff, river sediment</td>
</tr>
</tbody>
</table>

The turbidity of Philadelphia's water in 2022 was 86 percent below the maximum level of 0.3 NTU allowed by the State and Federal Regulations and was 57 percent below the Partnership for Safe Water turbidity goal of 0.1 NTU.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. PWD continuously operates and monitors water quality from a total of 160 filters at three drinking water treatment plants. In calendar year 2022, on one occasion, continuous on-line turbidity monitoring was interrupted on one of our filters and therefore we cannot be sure of the quality of the drinking water from this filter during the interruption. On June 1st, 2022 Filter #31 at the Queen Lane Drinking Water Treatment Plant was found in service without turbidity monitoring for a period of 86 hours. The monitoring interruption was a result of an instrumentation calibration procedural error that left the unit in hold mode creating an artificial steady turbidity reading, until operators recognized the data trend was not responding on June 5th, 2022. During this single filter monitoring interruption, the combination flow from the plant filters at Queen Lane Drinking Water Treatment Plant was continuously sampled and monitored with no change in turbidity levels. No water quality emergency occurred due to the monitoring interruption, and this notice is for informational purposes only.
DISINFECTION BYPRODUCTS

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Highest Level Allowed (EPA’s MCL) - One Year Average</th>
<th>Running Annual Average 2022*</th>
<th>System Wide Range of Results</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>80 ppb</td>
<td>44 ppb</td>
<td>15–66 ppb</td>
<td>No</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids (THAAs)</td>
<td>60 ppb</td>
<td>49 ppb</td>
<td>15–76 ppb</td>
<td>No</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>

*Monitoring is conducted at 16 locations throughout the City of Philadelphia. This result is the highest locational running annual average in 2022.

UNREGULATED CONTAMINANT MONITORING (UCMR)¹

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Testing Period</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide²</td>
<td>1/14/2020</td>
<td>0.034 ppm</td>
<td>0–0.052 ppm</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)²</td>
<td>1/14/2020</td>
<td>2.27 ppm</td>
<td>2.19–2.34 ppm</td>
</tr>
<tr>
<td>HAA5 Total³</td>
<td>1/14/2020</td>
<td>21.3 ppb</td>
<td>14.8–31.3 ppb</td>
</tr>
<tr>
<td>HAA6Br Total⁴</td>
<td>1/14/2020</td>
<td>7.1 ppb</td>
<td>3.8–10.3 ppb</td>
</tr>
<tr>
<td>HAA9 Total⁵</td>
<td>1/14/2020</td>
<td>28.2 ppb</td>
<td>23.6–35.5 ppb</td>
</tr>
<tr>
<td>Manganese</td>
<td>1/15/2020</td>
<td>0.55 ppb</td>
<td>0–0.95 ppb</td>
</tr>
</tbody>
</table>

¹ Unless otherwise noted, samples were collected from finished water sampling locations.

² Bromide and TOC represent source water samples.

³ HAA5 Total - Dibromoacetic Acid, Dichloroacetic Acid, Monobromoacetic Acid, Monochloroacetic Acid, and Trichloroacetic Acid

⁴ HAA6Br Total - Bromochloroacetic Acid, Bromodichloroacetic Acid, Dibromoacetic Acid, Dibromochloroacetic Acid, Monobromoacetic Acid, and Tribromoacetic Acid

⁵ HAA9 Total - Bromochloroacetic Acid, Bromodichloroacetic Acid, Chlorodibromoacetic Acid, Dibromoacetic Acid, Dichloroacetic Acid, Monobromoacetic Acid, Monochloroacetic Acid, Tribromoacetic Acid, and Trichloroacetic Acid

In 2020, PWD performed special monitoring as part of the Unregulated Contaminant Monitoring Rule (UCMR), a nationwide monitoring effort conducted by the EPA. Unregulated contaminants are those that do not yet have a drinking water standard set by the EPA. The purpose of monitoring for these contaminants is to help the EPA decide whether the contaminants should have a standard. For more information concerning UCMR, visit these websites: https://www.epa.gov/dwucmr/fourth-unregulated-contaminant-monitoring-rule or https://drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR

UNREGULATED CONTAMINANTS NOT DETECTED AT ANY OF THE SAMPLING LOCATIONS:

1-Butanol, 2-Methoxyethanol, 2-Propen-1-ol, alpha-Hexachlorocyclohexane, anatoxin-a, Butylated Hydroxyanisole, Chlorpyrifos, Cylindrospermopsin, Dimethipin, Ethoprop, Germanium, Microcystin Total, Nodularin, o-Toluidine, Oxyfluorfen, Permethrin Total, Profenofos, Quinoline, Tebuconazole, Tribufos
Glossary

Here are definitions for some of the words and phrases we use in the report and in our data tables.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. The action level is not based on one sample; instead, it is based on many samples.

Alkalinity: A measure of the water’s ability to resist changes in the pH level and a good indicator of overall water quality. Although there is no health risk from alkalinity, we monitor it to check our treatment processes.

E. coli (Escherichia coli): A type of coliform bacteria that is associated with human and animal fecal waste.

ppg (grains per gallon): A unit of water hardness. One grain per gallon is equal to 17.1 parts per million.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The minimum level of residual disinfectant required at the entry point to the distribution system.

NTU (nephelometric turbidity units): Turbidity is measured with an instrument called a nephelometer. Measurements are given in nephelometric turbidity units.

Pathogens: Bacteria, virus, or other microorganisms that can cause disease.

ppCi/L (Picocuries per liter): A measure of radioactivity.

ppm (parts per million): Denotes 1 part per 1,000,000 parts, which is equivalent to two-thirds of a gallon in an Olympic-sized swimming pool.

ppb (parts per billion): Denotes 1 part per 1,000,000,000 parts, which is equivalent to half a teaspoon in an Olympic-sized swimming pool.

μg/L (Microgram per liter): One microgram per liter is equal to one part per billion.

ppt (parts per trillion): Denotes 1 part per 1,000,000,000,000 parts, which is equivalent to one drop in 20 Olympic-sized swimming pools.

SOC (Synthetic Organic Chemical): Commercially made organic compounds, such as pesticides and herbicides.

Total Coliform: Coliforms are bacteria that are naturally present in the environment. Their presence in drinking water may indicate that other potentially harmful bacteria are also present.

THAAs (Total Haloacetic Acids): A group of chemicals known as disinfection byproducts. These form when a disinfectant reacts with naturally occurring organic and inorganic matter in the water.

TOC (Total Organic Carbon): A measure of the carbon content of organic matter. This measure is used to indicate the amount of organic material in the water that could potentially react with a disinfectant to form disinfection byproducts.

TTHMs (Total Trihalomethanes): A group of chemicals known as disinfection byproducts. These form when a disinfectant reacts with naturally occurring organic and inorganic matter in the water.

Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Turbidity: A measure of the clarity of water related to its particle content. Turbidity serves as an indicator for the effectiveness of the water treatment process. Low turbidity measurements, such as ours, show the significant removal of particles that are much smaller than can be seen by the naked eye.

VOC (Volatile Organic Chemicals): Organic chemicals that can be either man-made or naturally occurring. These include gases and volatile liquids.

WTP: Water Treatment Plant.
Top customer questions

How do I get my water tested?
We offer free lead and copper tests for residential customers who have concerns about their water.
▶ To request an appointment Call (215) 685-6300

How hard is Philadelphia’s water?
Philadelphia’s water is considered moderately hard. Hardness depends on the treatment plant that serves your area of the city.
▶ See A Closer Look at Hardness Page 9

Why does my tap water smell like a pool sometimes?
The smell of chlorine means your water is safe and treated to remove harmful organisms. You can reduce the smell by keeping a pitcher of fresh water in the refrigerator. This also reduces the earthy odor sometimes produced by algae in the rivers during spring.

Why does water have an earthy flavor sometimes?
Earthy or musty flavors occur naturally in drinking water and are among the most commonly reported worldwide. When certain algae-type organisms grow in our rivers, detectable levels of these odors can make their way into the treated drinking water.

These natural compounds have no known health effects at their natural levels, and are found in various foods.

We take steps to reduce their presence when detected.

Why do water utilities add fluoride to water?
It’s a natural element that helps prevent cavities. Philadelphia’s Health Department (and dentists) recommend we add fluoride to a level that helps protect children’s teeth.

Can I replace a lead service line?
Yes. If you don’t want to contact a plumber directly, apply for our Homeowners Emergency Loan Program (HELP).

A zero-interest loan can cover the cost of replacement.
▶ Learn more & apply www.phila.gov/water/helploan

Also: PWD will replace lead service lines for free if they are discovered during planned work on water mains.
Working together

You can help protect Philadelphia’s water quality.

Keep trash out of our waterways.
Protect our rivers and streams by properly disposing of garbage and recyclable materials.

Don’t flush anything but toilet paper.
Even “flushable” wipes can lead to clogs and backups affecting our homes and streets.

Always properly recycle or dispose of household hazardous wastes.
Don’t flush them down the toilet or down the sink, and don’t pour them into storm drains.

Stay informed
Sign up to receive water quality updates and more!

Get the latest news, useful information, and find out about upcoming events. Sign up for email and text alerts at water.phila.gov/signup.

Images: JPG Photo & Video, Sahar Coston-Hardy, Philadelphia Water Department